UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

U.S. GEOLOGICAL SURVEY INVESTIGATIONS IN THE U12n.03 DRIFT, RAINIER MESA, AREA 12, NEVADA TEST SITE

Ву

John R. Ege, R. D. Carroll, J. E. Magner, and D. R. Cunningham

CONTENTS

	Page
Abstract	1
Introduction	1
GeologyGeology	3
Engineering geology	9
Ground-water inflow at proposed working point	12
Physical and chemical properties	12
Geophysical surveys	12
Seismic velocity survey	12
Electrical resistivity survey	24
Discussion of geophysical results with respect to prediction-criteria for	
unstable ground	25
References cited	29

ILLUSTRATIONS

	Page		
Figure 1Index map showing location of Rainier Mesa, Nevada Test Site	2 4		
3Geology of the Ul2n.O3 drift, Rainier Mesa, Nevada Test Site	•		
4General stratigraphy of Rainier Mesa, Nevada Test Site	5		
5Geology of the Ul2n.03 UG-4 drill hole	6		
6Surface structure over the Ul2n.03 drift	7		
7Pre-Tertiary surface below the Ul2n.03 drift	8		
	0		
8Compressional-wave velocity measurements and resistivity in the Ul2n.03 drift	[in nackot]		
	26		
9Histogram of electrical resistivities of rock in the Ul2n.03 drift	/ •	back of	rent)
10Geophysical logs obtained in Hagestad drill hole	28 (111	DUCK OT	(CPC)
TABLES			
	Page		
Table 1X-ray crystallographic analyses of core samples from the Ul2n.03 UG-7			
drill hole	10		
	10		
2Natural-state physical properties of tuff samples from the Ul2n.03 UG-3 vertical core hole	11		
3Chemical analysis of core samples from Ul2n.03 UG-7 drill hole	13		
4Semiquantitative spectrographic analysis of core samples from the	7.4		
Ul2n.07 UG-3 drill hole	14		
5Lithologic log of the Ul2n.03 UG-2 drill hole	15		
6Lithologic log of the Ul2n.03 UG-4 drill hole	16		
7Lithologic log of the Ul2n.03 UG-7 drill hole	17		
8Physical properties of core samples from the Ul2n.03 UG-4 drill hole	18		
9Analyses of as-received grab sample from Ul2n.03 drift		n back o	f rept)
10Chemical analysis of water sample from Ul2n.03 drift	20		
llRadiochemical analysis of water sample from Ul2n.03 drift	21		
12Spectrographic analysis of water sample from U12n.03 drift	22		
13Tritium analysis of water sample from Ul2n.03 drift	23		

U.S. GEOLOGICAL SURVEY INVESTIGATIONS IN THE U12n.03 DRIFT, RAINIER MESA, AREA 12, NEVADA TEST SITE, NEVADA

Ву

John R. Ege, R. D. Carroll, J. E. Magner, and D. R. Cunningham

ABSTRACT

The Ul2n.03 drift was designed for a nuclear test site and mining was started on April 18, 1966, and completed May 22, 1967. The drift was driven along a bearing of N. 26° W. at an elevation of 1,849.2 m (6,067 ft) to a total length of 660.2 m (2,166 ft). The drift lies entirely within tunnel bed 4 of Tertiary age and crosses at nearly right angles, the Aqueduct syncline, a prominent geologic feature in Rainier Mesa. A combination of faults cutting nearly parallel to the drift, weak clay-rich tuff, and excessive ground water, all occurring in the trough of the syncline caused severe construction and support problems. These geologic factors created weak plastic rock that resulted in swelling and squeezing ground. Remedial measures were initiated that only temporarily stabilized ground and water conditions. The drift was eventually abandoned for the purposes of a nuclear test site and was subsequently used as a water storage facility.

The U.S. Geological Survey performed seismic velocity, electrical resistivity, and geologic surveys in the Ul2n.03 drift to provide information needed for site evaluation. Geophysical measurements were made in the interval CS 6+35 to CS 21+32. Seismic compressional-wave velocities range from 2,088 to 2,667 m/s (6,850 to 8,750 ft/s) and electrical resistivities range from 6.0 to 48 ohmmeters beneath a thin surface layer generally characterized by higher resistivities.

Electrical resistivity measurements indicate that sections of rock which may be potentially unstable for tunnel construction due to the presence of clay may be defined by this technique.

INTRODUCTION

The U12n.03 drift in Rainier Mesa, NTS (Nevada Test Site) (fig. 1) was investigated by the USGS (U.S. Geological Survey) over a decade ago as the proposed site of a Defense Atomic Support Agency (now Defense Nuclear Agency) nuclear weapon effects test. The drift was never utilized for its intended purpose; however, the data obtained are of value in light of the extensive clay-altered tuff encountered during mining. Consequently, these historical data are of value for both the observations connected with large intervals of pervasive clay alteration in tunnelling in Rainier Mesa as well as providing comparative data on clay-altered tuff at the NTS. Where the hindsight gained after many years of tunnelling in Rainier Mesa aids in amplifying observations in the U12n.03 drift, such data are also included in this report.

Mining of the U12n.03 drift started on April 18, 1966, and was completed May 22, 1967. The point of intersection of the U12n.03 portal is located at CS $32+42^{1}$ in the U12n extension,

 $^{^{1}}$ CS 32+42 refers to construction stations in the tunnel complex in accordance with surveying practice and is measured in English units. To convert to meters, multiply 3242 by 0.3048.

Figure 1.--Index map showing location of Rainier Mesa, Nevada Test Site.

Rainier Mesa, Nev. (fig. 2). The Ul2n.03 drift was driven N. 26° W. to a total length of 660.2 m (2,166 ft) at a 0.5 percent upward grade. The drift was not utilized for any nuclear tests.

D. L. Healey, C. H. Miller, and F. E. Currey provided the gravity data used to construct the pre-Tertiary surface structural contour map. F. M. Byers, Jr., R. P. Snyder, and D. R. Townsend (Fenix & Scisson, Inc.) mapped the surface geologic structures on Rainier Mesa over the U12n tunnel complex.

GEOLOGY

The Ul2n.03 drift passes through the Aqueduct syncline, a prominent feature in Rainier Mesa reflecting the deposition of volcanic tuff in an erosional valley in the pre-Tertiary rocks (Gibbons and others, 1963). The synclinal axis cuts the drift perpendicularly at CS 13+00, causing a repetition of the stratigraphic units on either side of the axis between the Ul2n.03 portal and the drift face (fig. 3, in pocket).

The stratigraphy found in Rainier Mesa is shown on figure 4. The Ul2n.03 drift lies entirely within tunnel bed 4 of Tertiary age, beginning at the portal in subunit 4AB (oldest), passing upsection to subunit 4K (youngest) in the synclinal axis and then proceeding downsection to subunit 4F at the face. The lithology is comprised of ash-fall tuff interbedded with reworked ash-fall tuff and tuffaceous sandstone. The tuff is bedded, zeolitized, and in places altered to a high percentage of clay.

There are two significant structural features that distinguish the U12n.03 drift: (1) a set of prominent northwest and north-northwest faults that cut the area surrounding the U12n.03 drift, and (2) a broad shallow syncline that trends about N. 65 $^{\circ}$ E. The strike of the northwest faults intersects the drift at relatively low angles that range from 10 $^{\circ}$ to 20 $^{\circ}$ and can be best seen between CS 0+00 and CS 12+00. The axis of the syncline crosses the drift at nearly 90 $^{\circ}$ near CS 13+00 feet.

Between CS 12+00 and CS 16+75 feet are yellowish-gray to yellowish-brown pumiceous tuff beds of subunit 4K. Some of the beds in 4K have been altered to an incompetent clayey, zeolitized, fully water-saturated tuff that has created heaving ground conditions in this interval. Incompetent spalling tuff obliterated most of the fault traces in the interval; however, it is inferred that a fault zone exists at around CS 17+00 feet. Beyond CS 17+00 the tuff becomes stronger and the proposed WP (working point) at CS 21+50 feet is in competent rock. No major faults were observed between CS 17+00 and CS 21+50. An exploratory core hole, U12n.03 UG-4, drilled 137.2 m (450 ft) ahead of the WP and parallel to the drift centerline, confirms that competent rock exists to CS 26+00 feet (fig. 5).

The surface structural map over the Ul2n.03 drift, shown on figure 6, locates the traces of three northwest-trending faults and the axis of the northwest-trending structural syncline. The pre-Tertiary surface below the Ul2n.03 drift is a broad north-northeast-trending valley having moderately steep sides. The northwest side of the valley, over which the drift lies, rises at about a 26 percent grade, or 15° slope. The drift starts above the center of the pre-Tertiary valley and then passes over its northwest side. The pre-Tertiary structure immediately below the drift is shown on figure 7. The distance between the drift and the

Figure 2.--Map showing location of Ul2n tunnel complex.

Era	System	Series	Formation	Member or unit and symbol
		Pliocene	Timber Mountain Tuff	Rainier Mesa Member Tmr
			Paintbrush Tuff	Tiva Canyon Member Tp
		İ	Stockade Wash Tuff	Tsw /
			Bedded and ash-flow tuffs of Area 20	Trab
			Bedded tuff of Dead Hor	rse Flat Tdhb
			Belted Range Tuff	Grouse Canyon Member Tbg
				Unit 5 Tt5
CENOZOIC	Tertiary	Miocene	Tunnel beds	Unit 4 Tt4 Subunits AB, CD, E, F, G, H, J, K ¹
				Unit 3 Tt3 Subunits A, BC, D ²
			Belted Range Tuff	Tub Spring Member Tbt
			Tunnel beds	Unit 2 Tt2
			Crater Flat Tuff	Tcf
			Tunnel beds	Unit 1 Ttl
			Redrock Valley Tuff	Trv
			Older tuffs	Tot
			Paleocolluvium	Тс
MESOZOIC	Cretaceous		Gold Meadows stock	Kqm
PALEOZOIC	Devovian Silurian Ordovician		Paleozoic rocks, undivided	
	Cambrian		Wood Canyon Formation	€p€w
RECAMBRIAN			Stirling Quartzite	p€s p€³

Figure 4.--General stratigraphy of Rainier Mesa area, Nevada Test Site.

 $^{^1{\}rm K}$ is the youngest. $^2{\rm D}$ is the youngest. $^3{\rm In}$ some drill holes, paleocolluvium of Tertiary age (Tc) rests on Paleozoic or Precambrian rocks.

Figure 5.--Geology of the Ul2n.03 UG-4 drill hole.

50 METERS

Figure 6.--Surface structure over the U12n.03 drift.

Figure 7.--Pre-Tertiary surface below the Ul2n.03 drift.

pre-Tertiary surface below it ranges between greater than 304.8 m (1,000 ft) at the portal to approximately 260 m (852 ft) at the face of the drift. The pre-Tertiary CP thrust fault lies beneath the drift at about CS 5+35. This fault thrusted an older quartzite block from the west over a younger dolomite surface.

ENGINEERING GEOLOGY

A combination of weak clay-rich tuff, ground water that collected in the syncline, and faults that parallel the drift alinement created very weak rock and unstable ground conditions in the Ul2n.03 drift. On July 5, 1966, "heavy ground" was first reported in the vicinity of CS 12+00, and squeezing and swelling ground conditions continued during mining to CS 15+25. The interval of unstable rock is in a strongly faulted zone of tunnel bed subunit 4K that lies in the trough of the syncline (fig. 3). Ground water in this zone seeped into the drift along joint and fault planes in quantities as much as 18.9 L/min (5 gal/min).

Tunnel bed subunit 4K consists of thin-bedded to massive yellowish-gray to moderate-reddish-brown ash-fall and reworked ash-fall tuff and minor amounts of tuffaceous sandstone. In the interval between CS 10+00 and CS 16+75, the tuff of subunit 4K has been strongly altered to clay through the action of the ground water that collected in the synclinal region. X-ray crystallographic analyses of core samples taken from the U12n.03 UG-7 boring at CS 14+87 indicated the presence of calcium-montmorillonite clay, a clay mineral that readily expands with the addition of water (table 1). Atterburg consistency limits were also determined for a sample taken from the U12n.03 UG-7 core hole. The results gave a liquid limit (LL) of 48, a plastic limit (PL) of 29, and a plasticity index (PI) of 19. These values indicate a highly plastic rock.

The U12n.03 drift was mined nearly parallel to a series of faults that intersect it between CS 0+00 and CS 15+00. This geometry creates unstable underground conditions in terms of geologic structures. Moreover, the drift instability is further increased in the synclinal trough where the fault system cut the very weak clay-rich tuff of subunit 4K.

During a 2-week period in the summer of 1966, measurements made of track and set movements after mining between CS 11+99 and CS 15+25 showed displacements as much as 91.4 cm (36 in). The cause for this squeezing can be attributed to plastic flow and swelling of the clayey tuff. The circumferential stresses in the drift walls, back, and invert are related to the in situ stress in the rock medium. The depth to drift level from the surface is about 335.3 m (1,100 ft). The bulk density of tuff above the U12n.03 drift is estimated at 1.85 g/cm³ (115 lb/ft³) which yields a figure of nearly 62 bars (900 lb/in²) for the free-field vertical stress at drift level. The stress concentration factor around the drift ranges between 2 and 3. Using the arbitrary factor of 2.5, the circumferential stress in the walls due to assumed overburden stresses becomes nearly 155 bars (2,250 lb/in²), a value that exceeds the tested compressive strength of the rock from the syncline (table 2). The stresses generated by the clay moving into the tunnel were reportedly sufficient to pop rock-bolt plates.

Table 1.--X-ray crystallographic analyses of core samples from the U12n.03 UG-7 drill hole

[Listed as parts in ten; tr=trace=<5 percent; <l=5-9 percent; analyses by U.S. Geological Survey laboratory]

Sample depth (m)	Rock unit	Montmorillonite	Illite-mica	Illite-mica Clinoptilolite Quartz Feldspar Cristobalite (opaline silica)	Quartz	Feldspar	Cristobalite (opaline silica)	Carbonate (acid reaction)	Amorphous (ash)
9.1	Tt 4K	~25 percent illite mixed layers 4+	t	\	tr	2+	۲>	tr	<u>+</u>
23.7	Tt 4K	20-30 percent illite mixed layers 2+	t r	2+	ţ	m	~	ţ	<u>+</u>
28.7	It 4K	20-30 percent illite mixed layers 3+	t 7	<u>+</u>	t	5+	~	ţ	-

Table 2.--Natural-state physical properties of tuff samples from the U12n.03 UG-3 vertical (down) core hole. The hole is located at CS 16+00 in the U12n.03 drift

[Leaders, ---, indicate no data]

Sample depth (meters)	Rock unit	Density (g/cm ³)	Unconfined compressive strength (kbars)	Static Young's modulus (kbars)
1.5	Tt 4K	2.10	26.5	1.4
6.6	Tt 4J	1.90	81.4	11.7
6.8	Tt 4J	1.97	109.5	
6.9	Tt 4J	1.95	83.8	
11.2	Tt 4J	1.91	67.4	9.6
11.2	Tt 4J	1.89	85.7	15.9
13.7	Tt 4J	1.86	145.5	
14.6	Tt 4J	1.91	19.9	
15.1	Tt 4J	1.92	93.1	
17.5	Tt 4J	1.92	158.6	24.1
18.4	Tt 4J	1.89	142.7	
18.4	Tt 4J	1.91	150.3	

GROUND-WATER INFLOW AT PROPOSED WORKING POINT

On September 21, 1966, ground water was encountered flowing from fractures in the face of the drift at the invert. Initial flow was measured at 208 L/min (55 gal/min). After 10 days of dewatering the rate of flow decreased to 151 L/min (40 gal/min); after 50 days the rate of flow was 95 L/min (25 gal/min). The water apparently was coming from a fracture zone at shallow depth below the invert that cut the drift at an angle of 60° and dipped 75°-90° toward the portal. Three 2.5-7.6 cm (1-3 in.) wide fractures were observed issuing water. A sump was dug through the aquifer zone and water pumped at varying rates ranging between 151 L/min and 227 L/min (40 and 60 gal/min). On January 3, 1968, after several months of pumping, the flow rate was measured at 30 L/min (8 gal/min). A bulkhead was subsequently constructed at the entrance of the drift and the drift used as a water supply for many years. The drift was reentered in 1979 for a limited distance at both ends during investigations in connection with the Ul2n.ll (Miners Iron) site. In April 1979, a weir installed at the WP end of the Ul2n.03 drift indicated the flow rate had reduced to approximately 1.3 L/min (0.35 gal/min) (Mark Henne, Desert Research Institute, oral commun.).

PHYSICAL AND CHEMICAL PROPERTIES

Physical properties, chemical, and semiquantitative spectrographic analyses were run on core and grab samples taken from drill holes in the Ul2n.03 drift (tables 2-4, 8-9). Lithologic and engineering logs of Ul2n.03 drill cores are shown on figure 5 and tables 5-7. Chemical and semiquantitative spectrographic analyses of water samples collected September 30, 1966, from the face of the drift are listed in tables 10-13.

GEOPHYSICAL SURVEYS

Seismic Velocity Survey

Compressional-wave velocity measurements were made in the interval from CS 6+35 to CS 21+32 along the east invert of the drift using a 12-trace portable refraction seismograph (Porta-seis model ER-75-12²). The reversed-profile method of shooting was used, in which geophones are arranged in a straight line and dynamite detonated at alternate ends of the line. Five geophone lines were used with the standard 12 geophones per line (fig. 8, in pocket). Four lines were utilized with geophones on 7.6-m (25-ft) centers. A fifth line, with geophones on 6.1-m (20 ft) centers, was used in the interval CS 9+70 to CS 12+20 to obtain greater detail in the area of a proposed overburden plug. Geophones were placed in shallow holes dug in the fill material of the drift floor to a depth where compact fill was reached within a foot of bedrock. Shotholes were drilled to a depth of 1.5 m (5 ft) at the ends of the individual geophone lines, and at offset distances of approximately 61.0 m (200 ft) beyond one spread. This was done to check if any high-velocity horizon might exist

 $^{^2}$ Use of brand name is for identification purposes and does not necessarily constitute endorsement by the U.S. Geological Survey.

Table 3.--Chemical analysis of core samples from U12n.03 UG-7 drill hole [U.S. Geological Survey laboratory; H2O-: water loss at temperature <110°C; H2O+: water loss at temperature >110°C]

CO ₂	<0.05	<.05	<.05	<.05	<.05
MnO percent)(0.07	.00	.00	00.	90.
P205 percent)(0.27	.27	.28	.20	.19
TiO2 percent)(0.93 0.27	06.	1.3	.84	98.
H20+ (percent)(3.9	4.0	3.5	4.6	4.7
H20- (percent)	7.4	6.4	4.3	5.1	4.5
K20 (percent)(2.2	1.8	1.7	2.2	2.5
N20 (percent)	1.9	2.1	2.2	2.1	2.1
CaO (percent)	4.2	4.3	4.9	3.8	4.1
MgO (percent)	1.9	2.0	3.0	1.8	1.6
Fe0 (percent)	0.28	44.	. 88	.32	.36
Fe203 (percent)	5.5	5.8	8.2	4.7	4.9
A1203 (percent)	15.2	16.6	15.8	16.2	15.6
Rock SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MgO CaO N ₂ O K ₂ O H ₂ O- H ₂ O+ TiO ₂ P ₂ O ₅ MnO CO ₂ unit (percent)(percent)(percent)(percent)(percent)(percent)(percent)(percent)(percent)	56.2	55.3	53.6	57.8	58.5
Rock unit	3.05 10 Tt 4K	Tt 4K	Tt 4K	69 Tt 4K	27.43 90 Tt 4K
le h (ft)	10	31	52		06
Sample F depth (m) (ft)	3.05	9.45 31 Tt 4K	15.85 52 Tt 4K	21.03	27.43

Table 4.--Semiquantitative spectrographic analysis of core samples from the Ul2n.07 UG-3 drill hole

[U.S. Geological Survey laboratory]

Y Yb Zn Nd (per- (per- cent) cent) cent) cent	0.0015 0.00015 0.02 0.015	.0015 .00015 .02 .015	.003 .0003 .03 .02	
V (per- cent)	0.003	.003	.00	
Sr (per- cent)	0.05	.07	-	
Sc (per- cent)	0.0007 0.05	.001	.0015	
Pb (per- cent)		.0007	.0015	
Nb Ni (per- (per- cent) cent)	0.0015 0.015 0.0007 0.001 0.0007	.0007	.0005 0	
La (per- cent)	0.015	.015	.02	
Ga (per- cent)	0.0015	.0015	.0015	
Cu (per- cent)	0.001	.0015	.0005	
Cr (per- cent)	0.002	.002	. 002	
Co (per- cent)	0.001	.0005	.0015	
Ce (per- cent)		.02	. 03	
Be (per- cent)	0.07 0.0003 0.02	.0002	.0002	
Ba (per- cent)	0.07	.07	Ξ.	
Rock unit	3.05 10 Tt 4K	Tt 4K	Tt 4K	
Sample depth (m) (ft)	10	31	52	
Sam dep (m)	3.05	9.45	15.85	

Table 5.--Lithologic log of the Ul2n.03 UG-2 drill hole

Description	of in	kness terval (feet)	of in	to base terval (feet)
Tunnel beds, unit 4				
Subunit 4G				
Tuff, calc-alkaline ash-fall, grayish-orange-pink;				
core disks into 7.6-cm (3-in.) segments	1.22	(4)	1.22	(4)
Subunit 4F				
Tuff, calc-alkaline ash-fall, very light gray to				
yellowish-gray; contains light-gray pumice				
(6 mm, 0.25 in) and sparse black lithic fragments				
(3 mm, 0.12 in.). Silicified layer at top of unit	9.30	(30.5)	10.52	(34.5)
Tuff, calc-alkaline (and peralkaline?) ash-fall,				
moderate-reddish-brown and pale-yellowish-brown;				
contains sparse to common pumice (3-6 mm,				
0.12-0.25 in.) and sparse black lithic fragments				
(<3 mm, <0.12 in.)	2,59	(8.5)	13.11	(43)
Tuff, calc-alkaline (reworked?) ash-fall, very light				
gray to yellowish-gray; contains sparse pumice and				
abundant black lithic fragments (3-10 mm, 0.12-0.5				
in), salt-and-pepper texture	5.49	(18)	18.60	(61)
Total depth			18.60	(61)

Table 6.--Lithologic log of Ul2n.03 UG-4 drill hole

Description	of in	kness terval (feet)	of in	to base terval (feet)
Tunnel bed 4				
Subunit 4F				
Tuff, calc-alkaline reworked ash-fall,				
scattered tuffaceous sandstone, and peralkaline				
ash-fall, grayish-yellow, very pale orange and				
scattered pale-reddish-brown and light-red;				
zeolitized, thick- to thin-bedded lithic				
fragments (1-10 mm), salt-and-pepper texture				
between 17.68-32.31 m (58-106 ft) and				
55.47-61.87 m (182-203 ft), silicified beds				
at 1.83 m (6 ft), 4.88 m (16 ft), 25.52 m				
(87 ft), 33.83 m (111 ft), and 50.60-51.51 m				()
(166-169 ft)	61.87	(203)	71.87	(203)
Subunit 4E				
Tuff, calc-alkaline ash-fall, pale-reddish-brown;				
zeolitized, thick bedded, fine texture	9.76	(32)	71.63	(235)
Subunit 4CD				
Tuff, calc-alkaline reworked ash-fall, ash-fall				
and tuffaceous sandstone, very pale orange to				
grayish-yellow; thick- to thin-bedded,				
zeolitized, slightly friable, silicified layer				
at 76.50 m (251 ft)	31.09	(102)	102.72	(337)
Subunit 4AB				
Tuff, calc-alkaline ash-fall, reworked ash-fall,				
tuffaceous sandstone and peralkaline ash-fall,				
grayish-yellow and moderate-reddish-brown;				
generally coarse textured, massive to thin				
bedded, silicified between 122.53-123.45 m				
(402-405 ft)	34.23	(112.3)	136.95	(449.3)
Total depth			136.95	(449.3)

Table 7.--Lithologic log of the U12n.03 UG-7 drill hole

Description	Thick of int meters	erval	of in	to base terval (feet)
Tunnel beds, unit 4				
Subunit 4K				
Tuff, calc-alkaline ash-fall, light-brown to				
pale-yellowish-brown; contains abundant very				
light gray argillized pumice fragments				
(5-25 mm); core is intensely altered to				
clay and is incompetent	29.60	(97.1)	29.60	(97.1)
Total depth			29.60	(97.1)

Table 8.--Physical properties of core samples from the Ul2n.03 UG-4 drill hole [Analyses by U.S. Geological Survey laboratory; leaders, ---, indicate no data]

Continue back Continue bac					:			[Measur	S ements m	Static made on a dry core	Static [Measurements made on as-received and dry core]	ed and	[Measurements made	ents made	Sonic on as-re	eceived (<u>Sonic</u> on as-received and dry core]	ore]
Tuel 1.44 2.30 1.61 37 14	Sample depth (meters)	Rock un it	Dry bulk g/cm ³)	55	Saturated ¹ (g/cm ³)	Porosity ¹ (percent)	Shore hardness ²	Unconfined compressive strength (kbars)	foung's modulus secant (kbars)	Shear modulus (kbars)	Bulk modulus (kbars)	100	Compressional velocity (m/s)	Shear velocity (m/s)	Young's modulus (kbars)	Shear modulus (kbars)	Bulk modulus (kbars)	oisson's ratio
Table 1.34 2.17 1.71 38 14 10.4 2.2 2.27 2.15 2.175 2.	5.8	Tt4F	1.44	2.30	1.81	37	14		1	-	1	:	2,431	1,463	94	39	55	0.21
Table 1.34 2.17 1.71 38 14 100.4 22 9 21 0.32 2.743 1.353 81 33 34 25 25 25 25 25 25 25 2								;	;	1	;	1	21,954	21,222	2 51	2 21	2 27	2.18
THE 1.40 2.21 1.81 33 20 2.71 2.21 2.15 2.15 2.140 2.60 1.33 2.0 2.60 2.60 1.33 2.0 2.60 1.33 2.0 2.60 1.33 2.0 2.60 1.33 2.0 2.60 1.33 2.0 2.60 1.30 2.6	12.2	Tt4F	1.34	2.17	1.71	38	14	103.4	23	6	21	0.32	2,402	1,393	83	33	54	.25
Table 1.46 2.21 1.81 33 20 2.22 2.63 2.10 2.640 1.343 2.8 3.3 2.8 2.8 2.8 2.448 2.								2168.9	247	221	2 2 2	2.15	22,125	21,450	₂ 60	² 28	² 23	2 .07
THE 1.56 2.20 1.85 2.9 2.6 2.77 2.20 2.65 2.10 2.19 2.431 1,1440 2.07 2.69 2.6 2	22.6	Tt4F	1.48	2.21	1.81	33	50	;	;	1	i	;	2,640	1,353	88	33	82	.32
T44								2717.0	2 203	285	2109	2.19	22,431	21,440	² 67	2 30	2 28	2.09
THE	22.9	Tt4F	1.56	2.20	1.85	29.	56	;	1	1	ļ	1	2,635	1,058	28	21	101	.40
T44								}	;	1	1	:	22,478	21,706	² 95	246	235	2.05
Table 1.56 2.16 1.90 23 37 2.248.2 2.57 2.25 2.14 2.7378 2.1,557 2.81 2.55 2.97 2.7578 2.1,557 2.81 2.55 2.97 2.7578 2.1,557 2.81 2.55 2.97 2.2,752 2.1,535 2.1,435 2.1,	29.0	Tt4F	1.49	2.24	1.82	34	50	;	į	;	į	;	2,618	1,682	119	52	22	.15
								2248.2	2 57	2 25	² 26	2.14	22,378	21,547	281	2 35	2 37	2.14
THE	35.1	Tt4F	1.66	2.16	1.90	23	37	;	:	;	}	1	3,078	1,807	154	62	26	.24
T-44 1.51 2.21 1.83 32 27								;	1	}	;	}	22,753	21,838	² 123	² 56	² 51	2.10
THAF 1.50 2.15 1.86 26 29 144.8 50 22 23 1.13 2.935 1.737 1.88 56 58 58 1.73 1.88 56 58 58 1.73 1.88 56 58 58 1.73 1.88 56 58 58 1.73 1.88 56 58 58 1.73 1.88 56 58 58 1.73 1.88 56 58 58 1.73 1.88 56 58 58 1.73 1.80 58 58 58 58 58 58 58	36.6	Tt4F	1.51	2.21	1.83	32	27	;	:	;	;	-	2,850	!	}	}	}	1
THE 1.60 2.15 1.86 26 29 144.8 50 22 23 1.13 1.99 1.73 1.98 56 85 85 1.75 1.90 1.72 2.09 30 1.99 3.6 5.6 5.26 45 5.26 1.008 5.4 5.26 3.99 1.40 2.15 1.90 1.75 36 20 2.25								;	ł	1 1	;	;	22,370	21,635	² 85	2 41	² 32	2.05
THE 1.51 1.90 1.72 20 30 179.3 65 26 45 2.6 2.6 2.6 1,670 2.9 2.1,608 2.9 2.1,608 2.9 2.1,608 2.9 2.1,609 2.1,	43.9	Tt4F	1.60	2.15	1.86	56	53	144.8	20	22	23	.13	2,935	1,737	138	99	82	.23
								;	:	;	!	;	22,285	21,608	284	2 41	2 28	2.01
THATE 1.40 2.17 1.75 36 20 2.20 2.20 2.1, 302 2.53 2.53 2.53 2.53 2.54 2.	51.8	Tt4F	1.51	1.90	1.72	20	30	179.3	99	56	45	.26	2,621	1,024	51	18	94	.41
THAFF 1.40 2.17 1.75 3.6 2.0 2,691 1,460 97 37 77 77 77 2.10 1.450 97 37 77 77 77 2.10 1.450 97 37 77 77 77 2.10 2.25 2.28 2.23 2.23 2.25 2.1465 2.1467 2.59 2.28 2.23 2.25 2.1465 2.1467 2.25 2.1467 2.25 2.1467 2.25 2.1467 2.25 2.1467 2.25 2.1467 2.25 2.1467 2.25 2.1467 2.25 2.1467 2.25 2.1467								;	:	:	;	}	22,206	21,302	² 63	2 26	2 39	2.23
THE 1.27 2.16 1.68 41 16 2,061 21,407 259 228 223 THE 1.67 2.29 1.94 27 2.3 2.65.2 2.58 2.23 2.36 2.132 2,1465 1,457 88 36 54 THE 1.67 2.29 1.94 27 2.3 2.1478 2.2 2.0 2.10 2,589 2.177 2.199 2.49 THE 1.67 2.29 1.94 27 2.3 2.1478 2.2 2.0 2.10 2,589 2.177 2.199 2.49 THE 1.67 2.29 1.94 27 2.3 2.1478 2.2 2.0 2.1 2.2 2,589 2.177 2.199 2.49 THE 1.67 2.29 1.94 2.7 2.3 2.1478 2.2 2.0 2.1 2.2 2,589 2.177 2.199 2.49 THE 1.68 2.3 2.2 2.0 1 38 45 31 2.2 2.2 2.0 2.1 2.2 2,589 2.1 2.2 2,080 2.1 2.2 2.2 2.2 2.0 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	57.9	Tt4F	1.40	2.17	1.75	36	20	1	į	1	1	;	2,691	1,460	46	37	11	.29
Tr4F 1.27 2.16 1.68 41 16 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>}</td> <td>;</td> <td>;</td> <td>}</td> <td>;</td> <td>2 2,061</td> <td>21,407</td> <td>2 59</td> <td>2 28</td> <td>2 23</td> <td>².06</td>								}	;	;	}	;	2 2,061	21,407	2 59	2 28	2 23	² .06
THATE 1.67 2.29 1.94 27 23 2.58 2.23 2.6 2.23 2.152 21,485 2.9 28 2.22 2.27		Tt4F	1.27	2.16	1.68	41	16	;	}	:	}	-	2,466	1,457	88	36	54	.23
THAE 1.67 2.29 1.94 27 23 2.777 1,777 141 61 68 THACO 1.83 2.22 2.01 18 45 617.1 177 74 98 .20 3.64 1,951 199 77 168 THACO 1.83 2.22 2.01 18 45 617.1 177 74 98 .20 3.644 1,951 199 77 168 THACO 1.70 2.35 1.98 28 31 2.166 1,719 179 77 168 THACO 1.70 2.35 1.91 33 18 2.765 1,719 190 77 168 29 26 2.90 2.10 2.46 47 168 2.66 49 47 48 47 47 47 47 47								2.55.2	2 58	2 23	2 36	2.23	22,152	21,485	2 59	2 28	2 22	2 .05
THATO 1.83 2.22 2.01 18 45 617.1 177 74 98 .20 3.64 1.951 199 77 168 1.40 1.51 1.98 2.8 31 3.042 1.951 1.99 77 168	66.4	Tt4E	1.67	2.29	1.94	27	23	;	}	}	1	}	2,777	1,777	141	19	89	.15
THATO 1.83 2.22 2.01 18 45 617.1 177 74 98 .20 3,664 1,951 199 77 168 THATO 1.70 2.35 1.98 28 31 3,042 1,807 159 285 267 THATO 1.53 2.28 1.86 33 18 2,832 2,000 2136 288 246 THATO 1.53 2.28 1.86 33 18 2,412 2,100 2136 288 246 THATO 1.54 1.50 2.31 1.91 31 23 2,436 2,452 2,450 2,452 2,452 2,456 2,445 2,531 2,454 2,531 2,444 2,531 2,4								21,378.9?	2121	2 5 5	2 50	2.10	22,589	21,712	2109	249	247	2.11
THACO 1.70 2.35 1.98 28 31 23,137 22,169 2180 285 267 THACO 1.70 2.35 1.98 28 31 3,042 1,807 159 65 97 THACO 1.53 2.28 1.86 33 18 2,832 2,000 2136 268 246 THACO 1.53 2.28 1.86 33 18 2,662 1,719 130 55 69 THACO 1.53 2.28 1.86 33 19 137.9 42 17 29 26 2,412 21,610 287 239 237 THACO 1.53 2.28 1.91 31 23 2,426 21,452 275 275 235 THACO 1.50 2.31 1.91 31 23 2,436 21,523 288 237 246 THACO 1.54 2.23 1.85 31 25 193.1 68 29 36 1.8 2,492 21,477 275 231 245 THACO 1.54 2.23 1.85 31 25 193.1 68 29 36 1.8 2,467 21,470 67 289 247 THACO 1.54 2.19 1.84 30 22 2,467 21,570 289 248 248 THACO 1.55 2.56 2.147 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15	76.2	Tt4CD	1.83	2.22	2.01	18	45	1.719	171	74	86	.20	3,664	1,951	199	11	168	.30
THATO 1.70 2.35 1.98 28 31 3.042 1,807 159 65 97 THATO 1.53 2.28 1.86 33 18 2.668.8 2196 290 281 2.10 2.412 2.000 2136 268 246 THATO 1.53 2.28 1.86 33 18 2.765 1,719 130 55 69 THATO 1.53 2.28 1.86 2.31 1.91 33 19 137.9 42 17 29 2.6 2,412 21,610 287 239 237 THATO 1.54 1.60 2.31 1.91 31 23 2.436 21,523 288 237 246 THATO 1.55 2.31 1.85 31 25 193.1 68 29 36 1.8 2,495 2,495 2,497 275 231 245 THATO 1.54 1.54 2.23 1.85 31 25 193.1 68 29 36 1.8 2,497 2,570 2,90 2,90 2,90 2,90 2,90 2,90 2,90 2,9								;	;	}	1	i	23,137	22,169	2 180	285	² 67	2 .05
THATE 1.58 2.28 1.86 33 18 2.765 1,719 130 55 69 THATE 1.58 2.33 1.91 33 19 13.7.9 42 17 29 2.6 2,412 2,1610 287 239 237 THATE 1.60 2.31 1.91 31 23 2.436 2,1523 288 237 246 THATE 1.40 2.18 1.78 36 23 2.436 1,622 106 47 48 THATE 1.54 2.23 1.85 31 25 193.1 68 29 36 .18 2,679 1,716 125 54 60 THATE 1.54 2.23 1.85 31 25 193.1 68 29 36 .18 2,679 1,716 125 54 101 THATE 1.54 2.19 1.84 30 22 2.467 2,570 2,570 2,90 2,90 2,90 2,90 2,90 2,90 2,90 2,9		Tt4CD	1.70	2.35	1.98	58	31	;	1	:	}	}	3,042	1,807	159	99	6	.23
THAM 1.53 2.28 1.86 33 18 2.765 1,719 130 55 69 THAM 1.58 2.33 1.91 33 19 137.9 42 17 29 281 2.10 2.450 TAMB 1.60 2.31 1.91 31 23 2.770 2.255 21,452 275 233 235 THAM 1.40 2.18 1.78 36 23 2.456 21,477 275 231 245 THAM 1.54 2.23 1.85 31 25 193.1 68 29 36 118 2,679 1,716 125 24 60 THAM 1.54 2.19 1.84 30 22 2.457 1,146 67 2,470								;	1	:	;	1	22,832	22,000	2136	89 2	2 46	2.01
THAMS 1.58 2.33 1.91 33 19 137.9 42 17 29 281 2.10 2.450		Tt4CD	1.53	2.28	1.86	33	18	;	;	:	}	-	2,765	1,719	130	52	69	.19
THAM I.58 2.33 1.91 33 19 137.9 42 17 29 .26 2,450 TAME I.60 2.31 1.91 31 23 2,256 21,452 275 233 235 THAM I.40 2.18 1.78 36 23 2,456 21,477 275 231 245 THAM I.54 2.23 1.85 31 25 193.1 68 29 36 .18 2,679 1,716 125 24 60 THAM I.54 2.19 1.84 30 22 2,467 21,570 290 239 247								2 668.8	2196	2 90	281	2.10	22,412	21,610	² 87	2 39	237	2.10
THAM 1.60 2.31 1.91 31 23 22,256 21,452 275 233 235 THAM 1.60 2.31 1.91 31 23 2,436 21,523 288 237 246 THAM 1.60 2.18 1.78 36 23 2,436 21,523 288 237 246 THAM 1.54 2.23 1.85 31 25 193.1 68 29 36 .18 2,679 1,716 125 54 60 THAM 1.54 2.19 1.84 30 22 2,687 1,146 67 249 101		Tt4AB	1.58	2.33	1.91	33	19	137.9	42	11	53	.26	2,450	}	;	;	į	;
Tt4AB 1.60 2.31 1.91 31 23 2.436 2.770								;	:	-	;	;	22,256	21,452	275	233	35	2.14
THAM 1.40 2.18 1.78 36 23 2.436 21,523 288 237 246 THAM 1.40 2.18 1.78 36 23 2.496 1,622 106 47 48 THAM 1.54 2.23 1.85 31 25 193.1 68 29 36 .18 2,679 1,716 125 54 60 THAM 1.54 2.19 1.84 30 22 2,945 27,677 2,570 299 247		Tt4AB	1.60	2.31	1.91	31	23	;	;	-	;	}	2,770	:	1	:	}	:
THAM 1.40 2.18 1.78 36 23 2.496 1,622 106 47 48 THAM 1.54 2.23 1.85 31 25 193.1 68 29 36 1.8 2,679 1,716 125 54 60 THAM 1.54 2.19 1.84 30 22 2,687 1,146 67 24 101 THAM 1.54 2.19 1.84 30 22 2.15 2.25 2.15 2.270 2.97 2.87 1.146 67 24 101								;	;	;	;	}	22,436	21,523	288	2 37	246	2.18
TEAAB 1.54 2.23 1.85 31 25 193.1 68 29 36 .18 2.679 1,716 125 54 60 1.44B 1.54 2.19 1.84 30 22 2.15 2.27 2.27 1,146 67 24 101 1.24 2.15 1.35 2.15 1.34 2.15 1.35 2.15 1.34 2.15 1.35 2.15 1.34 2.15 1.34 2.15 1.35 2.15 1.34 2.15 1.34 2.15 1.34 2.15 1.34 2.15 1.35 2.15 1.34 2.15 1.34 2.15 1.34 2.15 1.34 2.15 1.34 2.15 1.35 2.15 1.34 2.15		Tt4AB	1.40	2.18	1.78	36	23	;	;	}	;	1	2,496	1,622	106	47	48	.14
Tt4AB 1.54 2.23 1.85 31 25 193.1 68 29 36 .18 2.679 1.716 125 54 60 2.492 2.1570 290 239 247 Tt4AB 1.54 2.19 1.84 30 22 2.687 1,146 67 24 101 2 2,467 2.1570 293 245 101								;	;	}	i	1	22,456	21,477	275	231	245	2.22
T448 1.54 2.19 1.84 30 22 2.687 1,146 67 24 101 2 4.67 2 6.67 2		Tt4AB	1.54	2.23	1.85	31	52	193.1	89	29	36	.18	2,679	1,716	125	54	9 ;	.15
Tt4AB 1.54 2.19 1.84 30 22			i				;	;	;	1	1	1	2,492	0/4,1-	; ;	, 20, 6	-4/	89.
C#1 001 FO 1/01 / 1/1 /		Tt4AB	 \$	2.19	1.84	30	22	2 110 6	6	1 6	6		22 467	1,146	200	230	101	2 2 2

 $^{^{\}rm 1}\,{\rm Measured}$ by kerosene-saturated method. $^{\rm 2}\,{\rm Measured}$ on dry core.

Table 10.--Chemical analysis of water sample from U12n.03 drift

U. S. DEPT. OF THE INTERIOR -- GEOLOGICAL SURVEY Statement of Water Analysis

	tunnel			
Location NW of M	ercury, Nye Co., Nev	yada	N 892,739 E 638,485	
4 ¼	¼ SecT	R	Field. Office No.	
Date col. 9-30-66 Col. by J. E. Weir Field detns: Temp (°F Sp. Cond. (µmhos)_ Appearance	F) 68 pH_		Well Type	ased to ate drilled
Che	mical components ppm	epm	Physical char and compute	
Silica (SiO2) Aluminum (Al) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Strontium (Sr) Sodium (Na) Potassium (K) Lithium(Li) Zinc (Zn) Copper (Cu) Selenium (Se)	51 .02 .00 <.01 1.1 .2 .02 51 2.8 .030 <.01 <.01	0.05 .02 .00 2.22 .07	Dissolved Solids (ppm) Res. on evap. at 180°C Calculated Suspended solids (ppm) Hardness as CaCO3 (ppm) Total Non-carbonate Specific conductance (umhos at 25°C) pH Color Percent sodium SAR	180 183 4 0 230 8.0 94 12
1/ In solution at	Cations (epm)	2.36	Remarks:	
Bicarbonate (HCO3) Carbonate (CO3) Sulfate (SO4) Chloride (Cl) Fluoride (F) Nitrate (NO3) Phosphate (PO4) Boron (B)	110 0 12 9.6 .3 1.3 .00 .08	1.80 .00 .25 .27 .02 .02	·	
	Anions (epm)	2.36_		
Lob. No. 67-180	Anglysts G. F. Sca	rbro	Date	Checked 12-9-66

Table 11.--Radiochemical analysis of water sample from U12n.03 drift

U. S. DEPT. OF THE INTERIOR--GEOLOGICAL SURVEY Statement of Water Analysis - Radiochemical

Location NW of Mercury, Nye Co., Nevada N. 892, 739 E 636, 185	Source <u>U12n.03 tunnel</u>				
1/4	Location NW of Mercury, Nye Co.	Nevada	N 892,739 E 6	38,485	
Col. ByI. E. Weir Field detray; Temp. (PF) 63 pH Sp. Cond. (μmhos)	1/41/41/4 Sec	T	RFiel	d/Office No	
Col. ByI. E. Weir Field detray; Temp. (PF) 63 pH Sp. Cond. (μmhos)					
Col. 8y	Date Col. 9-30-66 [rime 1100]	P.d.t.	Well Type	Use	
Sp. Cond. (μmhos)	Col. By J. E. Weir	1	Depth (ft)	Cased to	
Sp. Cond. (μmhos)	Field detns: Temp. (°F) 68 pH		Diam. (in)Date Drilled		
Appearance Clear Discharge W.B.F.	Sp. Cond. (µmhos)Eh		Water level (ft)	
W.B.F. Owner	Appearance Clear		Discharge		
Date determined Dranium pc/g Date determined			W.B.F.		
Elements pc/1 pc/g Date determined		j			
Elements pc/1 pc/g Date determined			Owner		
Uranium			<u> </u>		
Uranium	,				
Radium as Ra ^{2eb}	Elements	pc/1	pc/g	Date determined	
Radium as Ra ^{2eb}	,		Ì		
Radium as Ra ^{2eb}	II and the control of				
Gross β (as Sr ⁹⁰ - Y ⁸⁰) 2.9 10-28-66 Gross α as U equivalent μg/1 5.5 10-28-66 Net extr. α, U equivalent μg/1 Gross γ (as Cs ¹³⁷) Strontium ⁹⁰ * Gross gamma scan Gross	Podium of Pogge				
Gross α as U equivalent μg/1 5.5 10-28-66 Net extr. α, U equivalent μg/1 Gross γ (as Cs ¹³ ′) Strontium ⁹ ° * Gross gamma scan		2 0		10.00.66	
Net extr. α, U equivalent μg/l Gross γ (as Cs ¹³) Strontiunθο*	Gross p (as Sr - Y)				
Gross y (as Cs ¹³⁷) Strontium ^{90 *} Gross gamma scan Isotopic Analysis Barium-lanthanum ¹⁴⁰ Cerium-praseodymium ¹⁴⁴ Cesium ¹³⁷ Chromium ⁷⁷ Cobalt ⁵⁰ Ruthenium-rhodium ¹⁰⁶ Tritium Linc ⁶ 5 Zirconium-niobium ⁹⁵ Date sample received 10-6-66 Program classification Analyst R.S.D. Date checked 11-3-66 Checked by V.J.J.		2.2		10-28-66	
Strontium ^{90 *} Gross gamma scan Isotopic Analysis Barium-lanthanum ¹⁴⁰ Cerium-praseodymium ¹⁴⁴ Cesium ¹³⁷ Chromium ⁵⁷ Cobalt ⁵⁰ Ruthenium-rhodium ¹⁰⁶ Tritium µc/ml Zinc ⁸⁵ Zirconium-niobium ⁹⁵ Date sample received 10-6-66 Program classification Analyst R.S.D. Date checked 11-4-66 Checked by V.J.J.	Net extr. α, U equivalent μg/1				
Gross gamma scan Isotopic Analysis Barium-lanthanum ¹⁴⁰ Cerium-praseodymium ¹⁴⁴ Cesium ¹³⁷ Chromium ⁵⁷ Cobalt ⁵⁰ Ruthenium-rhodium ¹⁰⁶ Tritium μc/ml Zinc ⁵⁵ Zirconium-niobium ⁹⁵ Date sample received 10-6-66 Program classification Analyst R.S.D. Date checked 11-4-66 Checked by V.J.J.					
Isotopic Analysis Barium-lanthanum ¹⁴⁰ Cerium-praseodymium ¹⁴⁴ Cesium ¹³⁷ Chromium ⁵⁷ Cobalt ⁵⁰ Ruthenium-rhodium ¹⁰⁶ Tritium µc/m1 Zinc ⁶⁵ Zirconium-niobium ⁹⁵ Date sample received 10-6-66 Program classification Analyst R,S.D. Date checked 11-4-66 Checked by V.J.J.					
Barium-lanthanum 140 Cerium-praseodymium 144 Cesium 137 Chromium 57 Cobalt 50 Ruthenium-rhodium 106 Tritium	Gross gamma scan				
Barium-lanthanum 140 Cerium-praseodymium 144 Cesium 137 Chromium 57 Cobalt 50 Ruthenium-rhodium 106 Tritium					
Barium-lanthanum 140 Cerium-praseodymium 144 Cesium 137 Chromium 57 Cobalt 50 Ruthenium-rhodium 106 Tritium					
Barium-lanthanum 140 Cerium-praseodymium 144 Cesium 137 Chromium 57 Cobalt 50 Ruthenium-rhodium 106 Tritium					
Cerium-praseodymium ¹⁴⁴ Cesium ¹³⁷ Chromium ⁵⁷ Cobalt ⁵⁰ Ruthenium-rhodium ¹⁰⁶ Tritium	Isotopic Analysis				
Cerium-praseodymium ¹⁴⁴ Cesium ¹³⁷ Chromium ⁵⁷ Cobalt ⁵⁰ Ruthenium-rhodium ¹⁰⁶ Tritium	Danis 1 140				
Cesium 37 Chromium 57 Cobalt 50 Ruthenium-rhodium 106 Tritium	Conjum - massadumi - 144				
Chromium ⁵⁷ Cobalt ⁵⁰ Ruthenium-rhodium ¹⁰⁶ Tritium	Continent 37				
Cobalt ⁵⁰ Ruthenium-rhodium ¹⁰⁶ Tritium					
Ruthenium-rhodium ¹⁰⁶ Tritium			-		
Tritium µc/ml Zinc ⁸⁵ Zirconium-niobium ⁹⁵ Date sample received 10-6-66 Date data released Date checked 11-4-66 Program classification Checked by V.J.J.					
Zirconium-niobium ⁹⁵ Date sample received 10-6-66 Date data released Date checked 11-4-66 Program classification Checked by V.J.J.					
Zirconium-niobium ^{9.5} Date sample received 10-6-66 Date data released Date checked 11-4-66 Program classification Checked by V.J.J.					
Date sample received 10-6-66 Date data released Program classification Date checked 11-4-66 Checked by V.J.J.					
Date data released Date checked 11-4-66 Program classification Checked by V.J.J.	Zirconium-niobium ³				
Date data released Date checked 11-4-66 Program classification Checked by V.J.J.					
Date data released Date checked 11-4-66 Program classification Checked by V.J.J.					
Date data released Date checked 11-4-66 Program classification Checked by V.J.J.		<u> </u>			
Date data released Date checked 11-4-66 Program classification Checked by V.J.J.			Analyst	R.S.D.	
Program classification Checked by V.J.J.					
		ross B com			

Table 12.--Spectrographic analysis of water sample from Ul2n.03 drift

U. S. DEPT. OF THE INTERIOR -- GEOLOGICAL SURVEY Statement of Water Analysis - Spectrographic

	2n.03 tunnel	·····			
	Marcury, Nye Co		N º02,730 E 638	3,485	
1	\\ \sec	T R.	Field/Office No.		
Col. By J. E. Field dems: Temp.	-66 Time 11 • Weir (°F) 68 	ρΗ	Well Type	UseCased ta Date drilled	
	Element	μg / Ι		Element	μg/1
Lead (Pb) Lithium (Li) Manganese (Mn)		<5 <2 25 <5 <4 <2 <2 <7	Titanium (Ti) Vanadium (V) Ytterbium (Yb) Yttrium (Y) Zinc (Zn)		6 ND <5 <5 ND
Phosphorus (P) Rubidium (Rb)			Dissolved solids		
Scandium (Sc) Silver (Ag)		<.7	R.O. E. at 180° C Acidified (HNO3) same		
Not determined < Detected, b	l ut less than figu	ure shown	ND Specifically sough X Semiquantitative e digit order shown	stimate in the	
-/	Bi Cd y Er Eu o Hf hg	 			
Prate No. 323.	524, 527	Date12	-2-00 Analyst _	P.B. and D.G.	

Table 13.--Tritium analysis of water sample from Ul2n.03 drift

U. S. DEPT. OF THE INTERIOR -- GEOLOGICAL SURVEY Statement of Water Analysis

_ ¼ ¼ ¼ SecT1	RField/Office No
Col. 9-30-66 Time 1100 P.d.t. By J. E. Weir d detns: Temp. (°F) 68 pH p. Cond. (µmhos) Eh ppearance Clear	Well Type Use Depth (ft.) Cased to Diam. (in.) Date drilled Water level (ft.) Discharge W. B. F.

Date sample received	10-6-66	
Lab. Na <u>. 67-180</u> Analysts_	E. Villasana	Date Checked
QW - 1A	22	

beyond the radius of investigation of the shorter spreads. Explosive charges were from one-half to one stick of dynamite (40 percent) placed at the bottoms of the shotholes which were stemmed with water.

Arrival times and the velocities determined from regression lines drawn through the plotted points, are shown on figure 8. The velocities noted on figure 8 represent least-squares regression velocities plus or minus one standard error of the slope of the regression line. The third figure listed on the long-offset segment of the time-distance plot obtained from the shotpoint at CS 9+65 is the slope of the least-squares regression line fitted to the entire geophone line. The results indicate a range of seismic velocity of 2,088-2,667 m/s (6,850-8,750 ft/s) characterizes the rock in the vicinity of the drift. The zone of heaving ground (fig. 8), a clayey section of the drift in which the original supports were inadequate to completely prevent rock from moving into the drift, exhibits a lower velocity throughout much of its length. The lower velocities in this region may be due to some disassembly of the drift walls in response to the action of the stress field on the clayey tuff. The long offset velocities indicate more competent tuff further out from the drift.

The interval CS 13+40 to CS 15+00 on figure 8 is also characterized by an anomalously high-velocity segment 4,694 m/s (15,400 ft/s) on the long offset portion of the travel-time plot recorded from the shotpoint at CS 9+65. A unique explanation for this phenomenon is not apparent, but it is considered most likely to be due to construction features in the drift at the time of the survey.

Electrical Resistivity Survey

Electrical resistivity soundings were made at 30.5-m (100-ft) intervals from CS 6+00 to CS 21+00 along the walls of the Ul2n.03 drift. Portable resistivity equipment (ABEM) was used for the electrical surveys. Electrical contact was made by pressing small (1-in. diameter) sponge-rubber electrodes, saturated with a mixture of brine and bentonite clay, against the rock. Electrodes were placed in horizontal alinement approximately 1.5 m (5 ft) above the track level in the Wenner configuration. Apparent resistivity values were obtained by expanding electrode spacings from 0.3 to 9.1 m (1 to 30 ft). The resulting resistivity readings were then corrected for the effect of the tunnel geometry by using empirical graphs (Scott and others, 1968). The curves of geometry-corrected resistivity were then plotted against electrode spacing, and true resistivities and depths of interfaces were interpreted by using Roman's two-layer curves for the Wenner electrode configuration (Roman, 1960). The interpreted results are presented on figure 8. The results indicate that a shallow, high-resistivity layer generally exists on the drift periphery, underlain by a lowresistivity layer. This condition is attributed to increased resistivity due to slabbing and to aeration of the rock close to the drift walls. A reversal of the high-low resistivity measurement normally observed, occurs at CS 10+00. No electrical layering was observed at CS 8+00. Measurements at CS 18+00, CS 19+00, and CS 20+00 indicate that three layers may exist around the drift at those locations.

The resistivity of the undisturbed rock surrounding the drift--the deepest layer--ranges from 6 to 40 ohmmeters.

DISCUSSION OF GEOPHYSICAL RESULTS WITH RESPECT TO PREDICTION-CRITERIA FOR UNSTABLE GROUND

The Ul2n.03 drift is unique among the Rainier Mesa tunnels in that a section of unstable clayey ground of relatively large extent caused buckling of the sets used for drift support³. The results of the in situ geophysical measurements bear examination in light of the extent the properties measured might be considered predictive when compared with experience in unaltered ground.

At the time of the seismic survey in U12n.03, the compressional velocities were not considered particularly anomalous based on available experience. With hindsight, the compressional velocity near the drift between CS 12+00 to CS 15+00 would be considered low for the tunnel bed of interest and would suggest additional geologic effects are superimposed on the basic volcanic tuff matrix. However, the compressional velocity is not dramatically lowered and probably should not be expected to be,as compressional velocity is a gross sample of compressive, rather than shear, strength⁴.

On the other hand, because the zone of poor quality rock is associated with clayey tuff the electrical resistivity may be expected to be anomalously low in rock of this type. Electrical resistivity of a saturated rock (which is essentially the condition in the tuffs in the Rainier Mesa tunnels) is a function of rock porosity when contained water is of high salinity. When contained water is appreciably fresh, however, rock resistivity is also highly affected by the presence of alteration products, in this case chiefly clay and zeolites, which can lower rock resistivity by an order of magnitude or more compared with a similar rock free of alteration. Some suggestion of this may be deduced by comparing the resistivity of the water sample obtained from fractures in the face of the drift and given in table 10 (43 ohmmeters) with the resistivity range of the undisturbed rock in the drift (6-40 ohmmeters)⁵. A detailed discussion of electrical resistivity of volcanic rocks from NTS in connection with this phenomenon has been presented elsewhere (Carroll and Cunningham, 1980).

The resistivities of the bulk tuff, i.e., the deeper layer resistivity shown on figure 8, have been plotted as a histogram on figure 9. The section of bad ground appears as a distinct low-resistivity anomaly due to the presence of clay minerals in the tuff. The ability to recognize clayey tuffs on the basis of their characteristically low resistivity has been used successfully for several years in conjunction with borehole electric logging at the NTS. A rule-of-thumb at NTS has been that resistivities less than 20 ohmmeters on electric logs indicate that the tuff in that part of the borehole contains clay. Geophysical logs from the

³The U12n.03 drift was the first indication that the syncline in this region is associated with extensive clay alteration of the tuff, a condition resulting in remedial expense in a subsequent drift (U12n.05) which was used for a weapon test. This condition was also one of the reasons for an extensive exploratory program involving horizontal drilling (Carroll and Cunningham, 1980).

⁴Techniques for measuring shear-wave velocity were not in use at the time of the Ul2n.03 seismic survey. Given that the greatest effects on strength properties due to clay would be in reduction of shear strength, this is unfortunate.

⁵A direct comparison of the water and rock resistivity is nebulous because the rock resistivity is a function of the resistivity of the water in the pores as well as the nature of the alteration products or minerals in the rock. A sample of water of this nature is difficult to obtain because of the extremely low permeability of the tuff and samples are generally obtained from fractures as was the sample described in table 10. The resistivity of the pore fluid has yet to be adequately defined.

Figure 9.--Histogram of electrical resistivities of rock in the Ul2n.03 drift.

Hagestad hole drilled on Rainier Mesa can be used as an example (fig. 10). The intervals labeled "A," "B," and "C" on the logs are intervals which can be expected to contain clay material. Knowledge gained in correlating electric logs from Rainier Mesa in the years subsequent to the Ul2n.03 investigations indicates that these horizons are tunnel bed 4J (A), the tunnel bed 3A/Tub Spring Member (B), and the typically weathered base on the top of the pre-Tertiary rocks (C). X-ray analyses at other locations indicate at most 20 percent mont-morillonite in the tunnel beds 4J and the 3A/Tub Spring Member contact. Tunnels containing tuff with clay contents in these amounts have been mined without difficulty. When clay horizons are of large lateral extent, as in portions of the Aqueduct syncline, or electric resistivity of the tunnel beds becomes less than 10-15 ohmmeters, potentially troublesome ground should be anticipated.

REFERENCES CITED

- Carroll, R. D., and Cunningham, M. J., 1980, Geophysical investigations in deep horizontal holes drilled ahead of tunnelling: International Journal of Rock Mechanics and Mining Sciences, v. 17, no. 2, p. 89-107.
- Gibbons, A. B., Hinrichs, E. N., Hansen, W. R., and Lemke, R. W., 1963, Geology of the Rainier Mesa Quadrangle, Nye County, Nevada: U.S. Geological Survey Geologic Quadrangle Map GQ-215, scale 1:24,000.
- Roman, Irwin, 1960, Apparent resistivity of a single uniform overburden: U.S. Geological Survey Professional Paper 365, 99 p.
- Scott, J. H., Lee, F. T., Carroll, R. D., and Robinson, C. S., 1968, The relationship of geophysical measurements to engineering and construction parameter, in the Straight Creek Tunnel pilot bore, Colorado: International Journal of Rock Mechanics and Mining Sciences, v. 5, p. 1-30.